Yantai adds a solar charging station bus to solar energy


Yanli Zhifu District Dongli Photovoltaic Charging Station has been put into use recently. This is another photovoltaic charging station in Yantai after the photovoltaic charging station in the High-tech Zone. It is reported that the average daily capacity of the photovoltaic charging station is about 1600kwh.


A reporter from the Zhili District Dongli Bus Station observed that 15 white, blue, and green charging posts that were nearly 2 meters high lined up in a row. Unlike the ordinary charging station roof tile structure, the whole charging station was The roof is all spliced ​​by a piece of solar photovoltaic panels with a length of 185 cm and a width of 99.2 cm. It is these thin photovoltaic panels that provide electric buses with sufficient electric energy to achieve true zero emissions. In order to ensure charging safety, Yantai Bus Group has also established a “cloud platform charging and charging integration” management system, which can effectively monitor the charging operation status of electric vehicles and collect and analyze bus charging and operation status in real time.

"Electric buses are very simple to charge. They are almost the same as fuels. It takes about two hours to fully charge electricity." The staff of the Dongli Bus Station in Zhifu District introduced the plan. At present, as a large number of pure electric buses are put into operation, the electric energy load will increase. The staff can use the Internet and big data analysis to rationally allocate vehicle charging time. During the day, when the power grid is at peak usage, full use of photovoltaic power generation will be supplemented by grid power supply, which will not cause fluctuations in grid load due to the increase in the charging of electric vehicles; at night, when grid power usage is low, the use of low valley power for pure electric vehicles The charging will reduce the waste of power grid electricity, and can enjoy lower electricity prices, so as to achieve the purpose of peak load reduction and economic rationality.

It is reported that the photovoltaic charging stations in the High-tech Zone and the Dongli Photovoltaic Charging Station in Zhifu District cumulatively save about 433 tons of standard coal per year, annual emission reduction of carbon dioxide 2166 tons, nitrogen oxides 33.95 tons, PM (2.5) 2.3 tons, PM (10) 2.5 Tons, currently can provide 200 sets of pure electric buses with electricity, accounting for 30% of the group's total electric vehicles. Compared with fuel buses, the bus group's existing 658 pure electric buses can reduce emissions of 36,538 tons of carbon dioxide and 580 tons of nitrogen oxides each year. The results of energy conservation and emission reduction are immediate.

With Yantai's vigorous promotion and development of new energy electric vehicles and supporting charging infrastructure, “green, green, and clean” photovoltaic charging stations will have bright prospects. In the future, with the successful operation of the bus group's series of photovoltaic charging stations, it will also be Yantai's development of clean energy, smart cities, and smart transportation add a beautiful landscape.





REGULATORS

You must be able to reduce the high-pressure gas in a cylinder to a working pressure before you can use it. This pressure reduction is done by a Regulator or reducing valve. The one basic job of all regulators is to take the high-pressure gas from the cylinder and reduce it to a level that can be safely used. Not only do they control the pressure but they also control the flow (volume of gas per hour).

Regulators come in all sizes and types. Some are designed for high-pressure oxygen cylinders (2,200 psig), while others are designed for low-pressure gases, such as natural gas (5 psig). Some gases like nitrous oxide or carbon dioxide freeze when their pressure is reduced so they require electrically heated regulators.

Most regulators have two gauges: one indicates the cylinder pressure when the valve is opened and the other indicates the pressure of the gas coming out of the regulator. You must open the regulator before you get a reading on the second gauge. This is the delivery pres-sure of the gas, and you must set the pressure that you need for your particular job.

The pressures that you read on regulator gauges is called gauge pressure. If you are using pounds per square inch, it should be written as psig (this acronym means pounds per square inch gauge). When the gauge on a cylinder reads zero, this does not mean that the cylinder is empty. In actuality, the cylinder is still full of gas, but the pressure is equal to the surrounding atmospheric pressure. Remember: no gas cylinder is empty unless it has been pumped out by a vacuum pump.

There are two types of regulators that control the flow of gas from a cylinder. These are either single-stage or double-stage regulators.

Single-Stage Regulators

Regulators are used on both high- and low-pressure systems. Figure 4-8 shows two SINGLE-STAGE regu-lators: one for acetylene and one for oxygen. The regulator mechanism consists of a nozzle through which the gases pass, a valve seat to close off the nozzle, a diaphragm, and balancing springs. These mechanisms are all enclosed in a suitable housing. Fuel-gas regulators and oxygen regulators are basically the same design. The difference being those designed for fuel gases are not made to withstand the high pressures that oxygen regulators are subjected to.



Figure 4-8.-Single-stage regulators.

In the oxygen regulator, the oxygen enters through the high-pressure inlet connection and passes through a glass wool falter that removes dust and dirt. Turning the adjusting screw IN (clockwise) allows the oxygen to pass from the high-pressure chamber to the low-pressure chamber of the regulator, through the regulator outlet, and through the hose to the torch. Turning the adjusting screw further clockwise increases the working pressure; turning it counterclockwise decreases the working pressure.

The high-Pressure Gauge on an oxygen regulator is graduated from 0 to 3,000 psig and from 0 to 220 in cubic feet. This allows readings of the gauge to deter-mine cylinder pressure and cubic content. Gauges are calibrated to read correctly at 70°F. The working pres-sure gauge may be graduated in [psig" from 0 to 150, 0 to 200, or from 0 to 400, depending upon the type of regulator used. For example, on regulators designed for heavy cutting, the working pressure gauge is graduated from 0 to 400.

The major disadvantage of single-stage regulators is that the working gas pressure you set will decrease as the cylinder pressure decreases; therefore, you must constantly monitor and reset the regulator if you require a fixed pressure and flow rate. Keeping the gas pressure and flow rate constant is too much to expect from a regulator that has to reduce the pressure of a full cylinder from 2,200 psig to 5 psig. This is where double-stage regulators solve the problem.

Double-Stage Regulators

The double-stage regulator is similar in principle to the one-stage regulator. The main difference being that the total pressure drop takes place in two stages instead of one. In the high-pressure stage, the cylinder pressure is reduced to an intermediate pressure that was predetermined by the manufacturer. In the low-pressure stage, the pressure is again reduced from the intermediate pressure to the working pressure you have chosen. A typical double-stage regulator is shown in figure 4-9.



Figure 4-9.-Double-stage regulator.

Problems and Safety

Regulators are precise and complicated pieces of equipment. Carelessness can do more to ruin a regulator than any other gas-using equipment. One can easily damage a regulator by simply forgetting to wipe clean the cylinder, regulator, or hose connections. When you open a high-pressure cylinder, the gas can rush into the regulator at the speed of sound. If there is any dirt present in the connections, it will be blasted into the precision-fitted valve seats, causing them to leak This results in a condition that is known as creep. Creep occurs when you shut of the regulator but not the cylinder and gas pressure is still being delivered to the low-pressure side.

Regulators are built with a minimum of two relief devices that protect you and the equipment in the case of regulator creep or high-pressure gas being released into the regulator all at once. All regulator gauges have blowout backs that release the pressure from the back of the gauge before the gauge glass explodes. Nowadays, most manufacturers use shatterproof plastic instead of glass.

The regulator body is also protected by safety devices. Blowout disks or spring-loaded relief valves are the two most common types of devices used. When a blowout disk ruptures, it sounds like a cannon. Spring-loaded relief valves usually make howling or shrieking like noises. In either case, your first action, after you recover from your initial fright, should be to turn off the cylinder valve. Remove the regulator and tag it for repair or disposal.

When opening a gas cylinder, you should just [crack" the valve a little. This should be done before attaching the regulator and every time thereafter. By opening the cylinder before connecting the regulator, you blow out any dirt or other foreign material that might be in the cylinder nozzle. Also, there is the possibility of a regulator exploding if the cylinder valve is opened rapidly.

WARNING

Oil or other petroleum products must never be used around oxygen regulators because these products will either cause a regulator explosion or fire

Regulator

Voltage Regulator,High Pressure Regulator,Gas Regulator

Changzhou Edaweld Trading Company Limited , https://www.edaweld.com

Posted on