What is Turbocharger?How it works?--XDMAKE Turbochargers

What is Turbocharger? A turbocharger, or turbo (colloquialism), from Greek "τύρβη" ("wake"),(also from Latin "turbo" ("spinning top"), is a turbine-driven forced induction device that increases an internal combustion engine's efficiency and power output by forcing extra air into the combustion chamber. This improvement over a naturally aspirated engine's output results because the turbine can force more air, and proportionately more fuel, into the combustion chamber than atmospheric pressure alone. Turbochargers were originally known as turbosuperchargers when all forced induction devices were classified as superchargers. Nowadays the term "supercharger" is usually applied only to mechanically driven forced induction devices. The key difference between a turbocharger and a conventional supercharger is that a supercharger is mechanically driven by the engine, often through a belt connected to the crankshaft, whereas a turbocharger is powered by a turbine driven by the engine's exhaust gas. Compared to a mechanically driven supercharger, turbochargers tend to be more efficient, but less responsive. Twincharger refers to an engine with both a supercharger and a turbocharger. Turbochargers are commonly used on truck, car, train, aircraft, and construction equipment engines. They are most often used with Otto cycle and Diesel cycle internal combustion engines. They have also been found useful in automotive fuel cells. How it works? In normally aspirated piston engines, intake gases are "pushed" into the engine by atmospheric pressure filling the volumetric void caused by the downward stroke of the piston(which creates a low-pressure area), similar to drawing liquid using a syringe. The amount of air actually inspirated, compared to the theoretical amount if the engine could maintain atmospheric pressure, is called volumetric efficiency.The objective of a turbocharger is to improve an engine's volumetric efficiency by increasing density of the intake gas (usually air) allowing more power per engine cycle. The turbocharger's compressor draws in ambient air and compresses it before it enters into the intake manifold at increased pressure. This results in a greater mass of air entering the cylinders on each intake stroke. The power needed to spin the centrifugal compressor is derived from the kinetic energy of the engine's exhaust gases. A turbocharger may also be used to increase fuel efficiency without increasing power. This is achieved by recovering waste energy in the exhaust and feeding it back into the engine intake. By using this otherwise wasted energy to increase the mass of air, it becomes easier to ensure that all fuel is burned before being vented at the start of the exhaust stage. The increased temperature from the higher pressure gives a higher Carnot efficiency. The control of turbochargers is very complex[further explanation needed] and has changed dramatically over the 100-plus years of its use. Modern turbochargers can use wastegates, blow-off valves and variable geometry, as discussed in later sections. The reduced density of intake air is often compounded by the loss of atmospheric density seen with elevated altitudes. Thus, a natural use of the turbocharger is with aircraft engines. As an aircraft climbs to higher altitudes, the pressure of the surrounding air quickly falls off. At 5,486 metres (17,999 ft), the air is at half the pressure of sea level, which means that the engine produces less than half-power at this altitude. Article From https://en.wikipedia.org/wiki/Turbocharger

Posted on